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Abstract-The stability of an initially imperfect, simply-supported, H-section beam-column, subjected to an axial
compressive load, is investigated. The material of the column is taken to behave as ageneral nonlinear viscoelastic
solid with a constitutive relation represented by a Volterra-Frechet functional polynomial. Conditions sufficient
to assure instantaneous, short term and long term stability are established. It is shown that a complete knowledge
of the material creep functions is not required in order to determine stability conditions. A program of experi
ments to characterize the material for stability studies is presented.

l. INTRODUCTION

INVESTIGATIONS of the stability of nonlinear hereditary structural systems give rise to the
consideration of two fundamental problems. Firstly, there is the need for the development
of more potent analytical procedures for the better representation of the mechanical
behavior of structural materials under a variety of service conditions. (This demands a
deeper study of constitutive equations.) Then, there is the requirement for the application
of more refined methods of analysis to investigate the stability of the solutions of nonlinear
differential, integral and integra-differential equations. This follows since the problem of
the stability of nonlinear hereditary systems may be reduced to the stability of an equation
in terms of such nonlinear operators.

With regard to the first problem, it may be noted that although the construction of
unique, comprehensive and fully detailed constitutive equations for structural materials
of significance would seem to be an important goal, at present it does not appear that such
an objective is practicable. It is perhaps for this reason that most investigations concerned
with the stability of particular nonlinear viscoelastic structures-such as the creep buckling
of viscoelastic columns, snap-through of viscoelastic arches, etc.-are based on the use of
quite specific nonlinear differential or quasilinear integral operators. These operators
whose coefficients have, in some cases, been experimentally obtained-hopefully represent
the behavior of the material under conditions similar to those expected during the life of
the structure. This approach may prove to be useful for the solution of specific problems,
but it certainly lacks generality. Instead of attempting to obtain closed, or nearly closed,
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solutions to this type of problem (based on particular stress-strain relationships), it
would seem at least as useful to seek pertinent properties of the solution based on a quite
general statement of the material behavior.

In this regard, the use of a general nonlinear stress-strain relationship represented by
means of a Volterra-Frechet functional expansion has proved to be an expedient instru
ment of analysis. Such a representation allows for a general and comprehensive treatment
of problems of stability. (See [IJ and [2].) Although increased efforts are being made to
experimentally evaluate the kernel functions appearing in the functional expansion for a
given material [3J, it has been shown [1, 2J that a complete knowledge ofthe kernel functions
is not necessary to establish the conditions of stability. Indeed, only a relatively limited
amount of information is required. This paper is an example of the application of previ
ously developed theory to the problem of creep buckling of an initially imperfect column
or equivalently, a beam-column. As a matter of convenience, the column cross-section is
taken to be an H-section.

Short term stability is investigated under very general assumptions of material behavior.
A program of experiments to determine the essential features of material behavior required
in an analysis of short term stability is discussed. Some particular cases of interest are
briefly considered. The last part of the paper deals with the determination of conditions
under which the beam-column is asymptotically stable. A formal analogy between the
conditions for asymptotic stability and instantaneous buckling is stated. The case of non
aging materials (and the procedure for evaluating asymptotic deflections in that instance)
is briefly discussed.

Finally, it is perhaps useful to clarify the way in which the term "stability" is employed
in this paper: it is used to signify stability in the sense of Lagrange [4]. Hereafter, "short
term stability" will be used to denote stability of the mechanical system under consideration
for allfinite values of the time t. "Asymptotic stability" will signify that in addition to being
stable for all finite values of t, the system is also stable for t ~ 00. It is noted that for the
problem under consideration, "stability" may be used synonymously for "boundedness of
deflection." This is so, because for the imperfect column no neutral state of equilibrium is
possible. Such a state could exist only for an initially straight column.

2. CONSTITUTIVE EQUATIONS

An initially imperfect, H-section, simply-supported column is subjected to a compressive
load, P(t), varying arbitrarily with time, as indicated in Fig. I. It is assumed that the load
possesses a finite positive limit

lim P(t) = P00 < ctJ
t~oo

(1 )

Dynamic effects will be disregarded in the present analysis. Furthermore, P(t) will be taken
to be zero for t < to.

The material is considered to be a general nonlinear viscoelastic one, for which the
constitutive equation relating the stress (J and the strain e in a uniaxial test is given by

r:::::t

e(t) = 3i'[(J(T)J,
r= -X)

(2)
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where:#' represents a continuous nonlinear functional. (Herein, for convenience, stresses
and strains will be considered positive if they are compressive.) Utilizing the generalized
Weierstrass polynomial theorem for continuous functionals (due to Frechet [5]), equation
(2) may be represented to any desired degree of accuracy by a functional polynomial of the
form

(3}

where in are the "material creep functions". The material is assumed to be in a quiescent
state for all t < to. The kernel functions in' which include products of delta functions of
argument t-r j (with i = 1,2, ... , n) to account for immediate nonlinear elastic behavior,
are identically zero whenever any of the arguments rj has a value less than the value of the
argument t. It should be noted that in previous analyses of the problem [6J, different explicit
expressions were assumed for the material in tension and in compression. Here it is not
necessary to do so, because the general constitutive law (2) already includes the possibility
of a different behavior in tension than in compression.

For the sake of generality, only very mild restrictions will be imposed on the material
functions. For example,

f
'+ 1+ f'+

e(n)(t+;tt,tz,···,tn) = f··· in(t+;rt,rz,···,rn)drtdrz···drn,n= 1,2, ... ,m,
II 12 In (4)

will be assumed to be piecewise continuous positive functions exhibiting, at most, step
discontinuities at t j = t.

It is evident that bounded asymptotic creep is a necessary-although not a sufficient
condition for asymptotic stability of viscoelastic structures. Therefore, when discussing
asymptotic stability the following further restriction will be imposed on the functions e(n):

lim e(n)(t; t t, t z, ... , tn) < 00,
I~ 00

n = 1,2, ... ,m, (5)

for all values of t j (i = 1,2, ... , m), including t j --> 00.

Moreover it will be assumed that the material ages asymptotically. By this is meant
that after a long period of time the material properties will be time invariant. This implies
that for large values of the variables t and r j (i.e., for t, r j --> (0), the function e(n) will tend
asymptotically to a limit function of the form

n = 1,2, ... m, (6)

for large values of t and rio

3. FUNCTIONAL EQUATION GOVERNING THE DEFLECTION

Referring to Fig. 1, it follows from geometrical considerations (where attention has been
restricted to a geometrically linearized analysis) that

(7)
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FIG. I(a). Cross section of idealized H-section beam.

FIG. I(b). Portion of bent beam-column.
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FIG. I(c). Deflections of simply supported column.

In the above, 1: 1 and 1: 2 are, respectively, the strains at the convex and concave side of the
beam-column, h is the depth of the section, W o is the initial crookedness, and w is the
deflection measured from woo From equilibrium it follows that

(8)

where (J 1 and (J 2 are the stresses in the convex and concave flanges, respectively. The bending
moment, M, is given by

(9)

Eliminating (J l' (J2' 1: 1 , £2 and M between equations (2), (7), (8) and (9), the following
functional equation is obtained

(10)
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where ii is the average stress, given by

ii(t) = pet)
A'

Assume the initially imperfect shape to be of the form

345

(11)

Wo = a sin ax,
1l:

a = T' (12)

where 1is the length of the column, and further assume that

w = bet) sin ax. (13)

In what follows we shall refer to "a" as the "initial imperfection."
Substituting equations (12) and (13) into equation (10), and, in the usual manner for

problems of this type [7J, collocating the solution at the center of the bar, the following
functional equation is obtained

where

t=t r=t

$'[ii(l + W)J -$'[ii(l- W)J - ha2b = 0,
r=to r=to

2
Wet) = h[a+b(t)].

(14)

(15)

In order to investigate the asymptotic stability of the deflection function bet), it is
convenient to recast equation (14) in the form of a nonlinear functional expansion. To
accomplish this, expand the functional $' appearing in equation (14) as in equation (3),
utilizing equation (15)

(16)

Grouping terms of equal order, the following mth order nonlinear integral equation is
obtained
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0'(rr + dO'(rr+ 2) ••• 0'(r n)!n(t ; r I , r 2' .•. , r n) drr + I drr +2 ••. drn ,

and 1J is the Dirac delta function.

4. CONDITIONS FOR STABILITY

(18)
r = 0,1,2, ... , n,

Conditions for the stability of the structure will follow from the investigation of the
stability of the solution of the mth order nonlinear integral equation (17). In order to carry
out this investigation, it is convenient to invert equation (17) so as to obtain b(t) as an
explicit functional. Equation (17) may be inverted by using an algorithm developed by
Volterra [8J, giving

(19)

where the functions Fi(t) are obtained from the inversion of the following infinite triangular
system of linear integral equations

with

Jt+ Fi(rl)KI(t;rddrl = -Si(t),
to

S I (t) = Ga(t)

i = 1,2, ... , (20)

and

(21 )

KI(t; r l ) = O'(rl)GI(t; r l )-hcx21J(t-rd

G,(t ; r I ' r 2 , ... , r r) = 0'(r I )O'(r 2) ••. 0'(Tr)Gr(t ; T I ' r 2' ..• , Tr),

(22)

r = 2,3, ... , m. (23)

The problem is now reduced to finding conditions for the boundedness of the functions
Fi(t). In the problem under consideration, it is desired to investigate short term and long
term (i.e., asymptotic) stability of the structure. This requires the investigation ofthe bound
edness of the functions Fi(t) for finite values of t (short term stability) and for t -+ 00

(asymptotic stability).
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4.1 Instantaneous and short term stability

It is apparent that the existence ofa bounded solution ofequations (20) for finite values
of t will depend on the behavior of the singularities associated with the kernel function
K 1(t; T1). To explicitly separate these singularities, recall equations (18) and write the
function G1(t ; T 1) in the form

4 m 1 It + ft + ft +

GI(t+; TI) = h I an,' ... 0'(T2)··· O'(T.)f.(t+; Tl' T2"'" T.) dT2 dT3'" dT.,
.=1 n. to to to

'---v-----'

n-l
(24)

where

(25)

X dT 1 dT2'" dT.,

the following relation holds

h 0'(T1) +) a +
- --=--() Gt(t ; T I = --;-B(t ; Ttl.
4 (J t uT I

(26)

(27)

i = 1,2, ... ,

(28)

(29)

i = 1,2, ...

Substituting K 1(t; T 1) given by equation (22) in equations (20), and taking into account
equation (27), equations (20) may be rewritten as follows

h2a2 ft+ a h
--4Fj(t)-O'(t)· F j(T 1)-;-B(t+; Tt)dTt = --Sj(t+),to uTI 4

Recalling equation (26), and taking into account the delta function behavior off" for
T 1 = t, equations (28) now take the form

[
h2ct.2J ft+ a h

O'(t)B(t+; t)--4 Fj(t)-O'(t) F;(TI)-B(t+; TI) dTt = --Sj(t),to OTI 4

where the delta function contribution associated with the term oji3T[B(t; T)] has been
separated out and explicitly included in the first term on the left hand side of equations (29).
Thus the term OB/OT t appearing in these equations exhibits at most a step discontinuity
atT I = t.

The analysis of the solution of equations (29) around the zeros of the function

[O'(t)B(t + ; t) - th2a2J
establishes that if

(30)
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then the functions F,(t), and consequently the deflections, remain bounded, (See Ref. [I].) 
If a real, finite, positive value of time, t , , exists such that 

a(t,)B(t: ; t1) = $hV, 

then buckling occurs at t = t, . This time will be called the “critical time.” 

(31) 

If, for a given material, a complete knowledge of the material creep functions, S,, is 
avaiiable, then, from equation (26), the function B(tt ; t) may be evaluated for a given 
average stress history Z(l). The problem of determining the critical time then reduces to the 
evaluation of the lowest real, finite, positive root, ti, of equation (31). However, this is not 
the case which is most interesting for practical applications. In fact, although the analysis 
given above entirely solves the short term stability problem under very general conditions, 
the complete experimental determination of the kernel functions f, for a given material is, 
in generaI, an extremely difficult and time-consuming undertaking. (See Ref. [I] and [3].) 
The principal aim of this paper is to show how, from a very general point of view, it is 
possible to solve specific problems by means of a limited, well-planned sequence of experi- 
ments. 

In order to develop this idea, recall equation (26) and write the condition for buckling 
given by equation (31) in the form 

Consider now an element of the material submitted to a certain uniaxial stress history 
5(t). At a certain time ti a small increment of the axial load is applied and the corresponding 
instantaneous increment of strain occurring at ti is recorded. This operation may be repeated 
a number of times, utilizing a sequence of different small stress increments 8cj, so as to 
generate a corresponding sequence of small instantaneous strain increments 6&j at the time 
ti. The limit 

will be defined as the tangent modulus of the material at time ti. Note that in general the 
tangent modulus depends on the stress history 5(t). 

It is not difficult to prove that the tangent modulus ET(t) of a material submitted to a 
uniaxial stress history ii(t) is given by 

In order to simplify the notation, write equation (32) in the form 

m+ : t) = & $, &4.(t), 
n 

where 

,&)=~+~:‘...~~a(r,)...a(r.)f.(~+;r, ,,.., r,)dri...dz, 

. . dz,. (33) 

(34) 

(35) 
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Let Bi(i = 1,2, f f 1 , m) be m different real numbers, and let &i(t) be the tangent modulus 
of the material submitted to a stress history &F(t). The tangent modulus ETi(t) is experi- 
mentally determined according to the procedure previously outlined. But now, recalling 
equations (33) and (35), it is seen that &i(t) is given by the expression 

&=&j $ nB:-‘$A.(t), i= 1,2 ,..., m. 
n 1 

(36) 

This system of m linearly independent equations permits the evaluation of the m 
coefficients A,(t) at any desired time, t. This in turn allows for the determination of J3(t+ ; t) 
by substitution into equation (34). 

In what follows some special cases will be presented and briefly discussed. 
~~~~~~~~~~0~s ~~c~~i~~. Instantaneous buckling will occur provided equation (32) is satis- 
fied for t = t,. Recalling equation (4), the condition for instantaneous buckling may be 
written 

(37) 

The coefficients ~(“)(t+ * t 0, I),...? to) = A&,) may be obtained by performing the sequence 
of experiments already discussed. However, in this specific case it is perhaps more con- 
venient to evaluate the coefficients A, by observing that the instantaneous response of the 
material under a constant uniaxial stress eoi is given by 

Ei = ~ ‘IT~iEtA’(t,i ; TO, . 1 . ) to). 
R=l n! 

By performing m experiments at m different stress levels gOi (i = 1,2,. . . m) it is therefore 
possible to directly evaluate P)(t,f ; t,, . . , , to). 
Small initial imperfection. If the imperfection parameter 2a/h is small compared with unity, 
then it is seen from equation (25) that LX, -+ n. Hence the condition for buckling in this case 
will be, if due account is also taken of equations (31) (33), (34) and (35). 

W) ~ = 
k-(t) 

ah2a2. 

This result is essentially equivalent to that obtained in Ref. [I], if account is taken that the 
notations are different, and that, in this case, the problem is restricted to the investigation 
of an H-section. 

It is worth noting that comparison of equations (32) and (33) yields that l/B@+ ; t) is 
the tangent modulus of a virtual material, submitted to a uniaxial stress history C(t) whose 
material creep functions are (aJn)f,(t ; 7, , z2, . . . , z,). Since the coefficients (a&z) > 1, for 
n > 2, and they increase with the imperfection parameter 2a/h, then the apparent tangent 
modulus, l/B(t+ ; t), will be smaller than the actual tangent modulus of the material, ET(t), 
and it will decrease as the initial imperfection increases. The coefficients a, play the role, in 
the problem of the imperfect column, of increasing the contribution of the higher order 
creep functions f,. 
The iinear and the q~a~~at~c case. When m = 1 the condition for short term buckling is 

C(t) = $h2a2ET(t), (3% 



350 J. N. DISTBFANO and J. L. SACKMAN 

where the tangent modulus 

ET(t) = 
1 

&‘l’(t + ; t) 

is independent of the load history and the initial imperfection. 
When m = 2, (i.e., when the material may be represented by a second order functional 

polynomial) CI, = 1 and CQ = 2. Then the condition for buckling is 

r+ t+ 
c(t)&(yt + ; t) + J-s a(t) 

C(T,)~(T~). f2(t+ ; TV, TV) dr, dr, = __ = +h2a2, (41) 
f 10 ET@, 5) 

where ET@, 5) symbolizes the tangent modulus of the material submitted to a stress history 
equal to exactly the true average stress history 5 acting on the actual column. This interest- 
ing result shows that, in this case also, the apparent tangent modulus l/B(t+ ; t) does not 
depend on the initial imperfection-Palthough it does depend on the load history. 

4.2 Asymptotic stability 

Let a(t) be an average stress history acting on a column with an initial imperfection of 
amount “a,” and assume that equation (30) remains satisfied (i.e., that no buckling occurs 
for any finite value of time). Suppose-as was assumed in equation (ltthat P(t), and 
consequently C(t), possesses a finite limit as t -+ co. The problem is now to investigate 
under what conditions the deflection will remain bounded as t + co. Hitherto, very mild 
restrictions were imposed on the functions f, [or on the functions E(“), related to f, through 
equations (4)]. To investigate asymptotic stability, equations (5) and (6) are assumed to be 
satisfied. The asymptotic stability of the structure will follow from the investigation of the 
asymptotic stability of the mth order nonlinear integral equation (17). A similar type of 
investigation has already been performed in a previous work [2]. It may be shown from 
that work that if equation (5) is satisfied, and if a function K(t -7,) exists such that it 
approximates the function K,(t ; 7,) [given by equation (22)] in the sense that 

lim 
s 

w Il((t-5,)-Kl(t;z,)le-q”-r1)d~, = 0, Rev > 0, 
f-+= 1” 

(42) 

then if 

s 

m 
R(r) e-“I dr # 0, Rev 2 0, (43) 

10 

b(t) is bounded as t + co. 
To construct a function R,(t- zi) which approximates K,(t ; T,) in the sense of equation 

(42), it is natural to utilize the asymptotic form of the “imperfect” (i.e., time-varying) 
kernel K,(t ; zl). Taking into account equations (4), (6) and (24), it is not difficult to establish 
that 

where 

R,(t-s,) = o,G,(t-z,)-hcx26(t--J, (44) 

0% = 
lim p(t) = pCC 
t-m A A 

(45) 
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and 

G,@-T,) = -;g $ 2.s : E( )(t-Tz, co 00 ) ) )...) co), 
In 1 

(46) 

approximates K,(t ; ri) in the sense of equation (42). 
Substitution of equation (44) into equation (43) yields 

where 

g(r) e-“’ dr # 1, Rev 2 0, (47) 

&) = g.&nf, %.&E(.I(T, co,. . . , co). (48) 

Consider now that a completely aged sample of the material under consideration is 
subjected to a uniaxial creep test under the stress 5,H(t) where H is the heaviside unit step 
function, and 5, is any stress level. Let the strain response in this creep test be denoted by 
E,. Now imagine another completely aged sample of this material to be subjected to a stress 
history ~7,H(t)+65,H(t- to), where 65, is a positive infinitesimal increment of stress. 
Denote the strain response in this test by E, + BE,. Let r be the time increment t-to, 
and consider the case when to + co. On physical grounds it is to be expected that the 
increment of strain, &,(z), due to the increment of stress, G,, will be a positive, monotoni- 
cally increasing function of r. In what follows, attention will be restricted to materials which 
behave in such a manner. 

It is easy to establish that, to within higher order terms in the infinitesimal stress 
increment 65,) 

From the above discussion, it then follows that 

m c”- 1 

nz, (n-l)! m z&(yT, co, 03,. . . ) co) > 0, for any O,, 

and 

If equation (48) is rewritten, taking into account equation (25), it takes the form 

25 
g(z) = 00 

h2ci2 

+a fj [5:,(1-2u/h)]“-’ 

arnE1 (n_l)! &(“)(Z cc cc m 9 9 ,...,~I . (52) 

(49) 



352 J. N. DISTI~FANO and J. L. SACKMAN 

It then follows from equation (51), recalling that cm > 0, that g(r) > 0. Consequently 
equation (47) will be satisfied if, and only if, 

or, equivalently, 

g(r) dr < 1, (53) 

(54) 

This equation provides a sufficient condition for asymptotic boundedness of the 
deflection. (It may be proved to be a necessary condition provided some further very weak 
restrictions on the kernels at”) are assumed.) The critical value of the asymptotic average 
stress, c*, , may be obtained by replacing the inequality sign in equation (54) by an equality 
sign, and solving the resulting nonlinear algebraic equation in 5%. It is important to note- 
as is clearly indicated in equation (54~that the critical load does not depend on a complete 
knowledge of the material functions E(“) appearing in the constitutive equation (3), but only 
on their asymptotic values. 

In order to directly determine the values of .$)(a, co,. . . , 00) experimentally, consider 
a specimen of the material which has been completely aged, and submit it to a constant 
stress pi. From equation (3), and utilizing the asymptotic form of .s(“) given by equation (6), 
the expression for the asymptotic strain ai of the completely aged material under the 
constant stress ci is given by 

Ei(OO) = “i, $$(W, co,. . . , 03). (55) 

By performing m such experiments at m different stress levels oi (i = 1,2,. . . , m), the 
m outputs EJCO) will be produced. Then the solution of the system of m linear algebraic 
equations given by equation (55), with i = 1,2,. . . , m, uniquely determines the values of the 
m coefficients P) (00 

A significaz 
. 3 

physical 
co), n = 1,2,. . . , m. 
interpretation of equation (54), which gives the condition for 

asymptotic boundedness of the deflection, follows from comparison of this equation with 
the condition for boundedness of the deflection under instantaneous loading. The condition 
for instantaneous buckling was already given by equation (37), and it is immediately 
recognized that the condition for boundedness under instantaneous loading is given by 

n$I ~&~~(t,,)~(“‘(t; ; t,, . . . , to) < +h2cr2. (56) 

Comparison of equations (54) and (56) shows that the condition for asymptotic bounded- 
ness given by equation (54) is nothing but the condition for boundedness of the deflection 
of a nonlinear elastic column for which the nonlinear elastic stress-strain relationship is 

&= f ““d$(cDm )...) co). 
n=, n! 

(57) 

Nonaging materials-Asymptotic deflections. If the material is nonaging, the creep functions 
appearing in equation (3) will be functions of the differences of the arguments-i.e., they will 
havetheformf,(t-z,,t-z,,. ., t - T,). Then the material functions will reduce to the form 
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d”)(t - z 1) t - z2 ) . . . ) t-r,). It is now easy to show that the condition for asymptotic 
boundedness reduces to 

“$, a.%&@)(m, 00,. . . , co) < $h2a2. (58) 

This is essentially equivalent to equation (54), except that the asymptotic form (for large 
values of t and 7.) @(cc cc 
replaced by the actzal li’mit’ ’ 

.., co) of the material functions d")(t ; zl, r2,. . . , z,) has been 

&(“)(co co , ,..., co) = lim s(“)(t - r , , t - z 2,..., t-4, 
1-a) 

which is independent of the values of ri. 
An advantage of dealing with nonaging materials is that if the input of the system is 

asymptotically bounded then the output of the system will not depend on the input history. 
This property, and its consequences, was studied in detail in Ref. [2]. If the theory developed 
in that reference is applied to the problem under consideration, it may be shown that the 
asymptotic deflection of the column may be computed as the deflection of a nonlinear 
elastic column submitted to a load P(W), and for which the mechanical behavior of the 
material is governed by the nonlinear elastic stress-strain relationship 

& = f “P)(,, co,. . .) co). 
n=l n! 

5. CONCLUSIONS 

An investigation was conducted of the conditions under which a simply-supported, 
H-section, nonlinear viscoelastic column is stable. The material was assumed to be a quite 
general nonlinear viscoelastic one whose stress-strain relationship is given by a Volterra- 
Frechet functional expansion. The investigation has shown that if at a certain finite time 
the axial load P(t) approaches the value 

P(t) = 
?r2[1/B(t’ ; t)]1 

I2 9 I+, 

then buckling occurs. If the function l/B@+ ; t), given by equation (26), is interpreted as an 
apparent (or virtual) tangent modulus, then a formal analogy exists between creep buckling 
of a column with arbitrary initial imperfection and inelastic buckling, in the sense of 
Shanley [9], of an initially straight column under a concentric load [l]. Further-and 
tightening the analogy-it has been shown that l/B(t+ ; t) may be considered as the actual 
tangent modulus of a virtual material which has been submitted to the given average stress 
history. For the virtual material, the creep functions appearing in the functional expansion 
given by equation (3) are (a,/n)f. instead off,. Then-as was to be expected-the apparent 
tangent modulus depends not only on the stress history but also on the initial imperfection 
of the column. It has been demonstrated that if the stress-strain relationship is not explicitly 
known for a certain material, then the measurement of the actual tangent modulus of the 
real material at m different levels of stress history allows for the evaluation of the apparent 
tangent modulus. 



354 J. N. DIS~~FANO and J. L. SACKMAN 

The investigation of the conditions for which the bar is asymptotically stable was con- 
ducted under the further assumptions that the material exhibits bounded creep, ages 
asymptotically and the axial load possesses a finite limit as t + co. Application of a previ- 
ously developed theory [2] allowed for the determination of the condition for asymptotic 
stability. A formal analogy is also obtained in this case, between the condition for asymptotic 
stability of the real column and the condition for buckling of a corresponding nonlinearly 
elastic column. 
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A6cTpHT--kiCCnenyeTCx yCTOHYHBOCTh CBO6OnHO OnepTOir, C Ha‘iana HeCOBepuEHHOTi KOnOHHM, C 

nOnepe'IHblM CeYeHHeM B BHne6yKBbI H, CKtaTOfi OCeBO8 CHJIO8. npennaraeTCX,YTO MaTepHm KOnOMHbI 

BeneT ce6n KaK o6ruee HenHHetiHoe ynpyro-nx3Koe Tsepnoe Teno c onpenennromeii sanuc~ocrbro, 
BblpaWHHOti +yHKnHOHanbHbIM MHOrOYneHOM BOnbTeppa+wne. BbiBOnflTCH .QOCTaTOYHbIe yCnOBHI 

,~nfr 0npeneneHen 9brpanceHHP MTHOB~HHO~%, KpaTKOBpeMeHHOfi II ,!WJn-OBpeMeHHOi yCTOtiYRBOCTH. 

noKa3yeTCX, 4~0 He Tpe6yeTcX nOnHOr0 3HaHHR @yHKnHfi non3yYecTH MaTepHana, YT06bI OnpenenHTb 

ycnoslia ~CTO~YUHOCTH. &ETCX nporpah4Ma srrcnepeivrerrron nna onpenenemis xapaxrepwcrumi Marepaana 
npri HCCnenOBaHHRX yCTOiiYHBOCTH. 


